
​
Serverless Computing Simulator

Serverless computing is an emerging cloud model where developers just write small
functions and upload them, and the cloud provider takes care of “everything else”: creating
containers or VMs, placing them on machines,
scaling them up and down, and charging per
request.

From the Service Provider’s, e.g., Amazon Web
Services, Microsoft Azure, Google Cloud,
perspective, in a real serverless platform there
are many moving parts behind the scenes: a
scheduler decides where to run each function
instance, a load balancer routes incoming
requests, an autoscaler decides how many
instances to keep alive, and other components
handle logging, monitoring, etc. All this complexity
is hidden from the programmer, but it makes the
platform itself quite complicated to understand
and change.

Because of that complexity, it is hard for a student
or researcher to experiment directly on a real
serverless platform. Setting up open-source
frameworks, i.e., Kubernetes, Knative, finding
enough machines, and configuring monitoring
already takes time, money, and operational skills.
Going one step further and trying to change internal policies, like writing a new placement
algorithm or autoscaling rule, usually means learning a large codebase, understanding many
configuration options, and risking breaking the platform. This is why simulators [1,2] are so
useful: they let us try out ideas offline, quickly and safely, without needing to deploy a whole
cloud.

In recent years, cloud providers and researchers have released many real-world traces of
serverless workloads, along with a wide range of ideas for placement, dispatching, and
autoscaling policies. This creates a great opportunity to study how different strategies
behave under realistic conditions.

In this thesis, the student will implement and use a serverless simulator to replay such
traces and compare different methodologies for serverless deployments from the provider’s
point of view. For example, how policies affect resource usage, cost, and quality of service.

References:

[1] Cao, Han, et al. "ServlessSimPro: A comprehensive serverless simulation platform."
Future Generation Computer Systems 163 (2025): 107558.

[2] Lannurien, Vincent, et al. "HeROsim: An Allocation and Scheduling Simulator for
Evaluating Serverless Orchestration Policies." IEEE Internet Computing (2024).

Contact:

Achilleas Tzenetopoulos, Ph.D. candidate NTUA: (atzenetopoulos@microlab.ntua.gr)​
Dimosthenis Masouros, Post Doc NTUA​
Sotirios Xydis, Ass. Prof., Microlab NTUA​
Dimitrios Soudris, Professor Microlab NTUA​

mailto:atzenetopoulos@microlab.ntua.gr

