Energy-Optimal Computing in the AI Age: Where We Are, Where Can We Go

Better: Software Execution

Energy-Optimal Computing in the AI Age: Where We Are, Where Can We Go

Why bother?

Figure 1.1.1: Improvement in microprocessor and gate performance vs. year. Figure 1.1.2: Number of transistors and feature size vs. year.

Why bother?

Figure 1.1.1: Improvement in microprocessor and gate performance vs. year. Figure 1.1.2: Number of transistors and feature size vs. year.

Performance has scaled well . . .

Why bother?

Transistors got more + smaller . . .

Performance has scaled well . . .

... BUT:

Intel AMD 2 GHz IBM DEC 1 GHz Sun 4 other 500 MHz 200 MHz 100 MHz 50 MHz 20 MHz 198 1000 2005 2015 10 MHz 1985 1990 1995 2000 2005 2010 2015

5 GHz

Figure 1.1.3: Power density in mW/mm² vs. year.

Figure 1.1.4: Clock frequency vs. year. The red line indicates frequency increase due to gate speed. The insert plot is Vdd vs. year.

... BUT:

Figure 1.1.3: Power density in mW/mm² vs. year.

We hit the power wall!

Figure 1.1.4: Clock frequency vs. year. The red line indicates frequency increase due to gate speed. The insert plot is Vdd vs. year.

... BUT:

Figure 1.1.3: Power density in mW/mm² vs. year.

We hit the power wall!

Figure 1.1.4: Clock frequency vs. year. The red line indicates frequency increase due to gate speed. The insert plot is Vdd vs. year.

Which means: it was time for **multiple cores** per chip

All is well on the performance front

Performance
 := Chip
 throughput

All is well on the performance front

- Performance
 := Chip
 throughput
- But what about the energy?

All is well on the performance front

- Performance
 := Chip
 throughput
- But what about the energy?

Figure 1.1.5: Instruction energy vs. peak performance (normalized).

Figure 1.1.6: Instruction energy vs performance, with LLcache leakage added, with original points shown in grey for comparison.

It gets worse . . .

Figure 1.1.7: Power breakdown of an 8 core server chip.

It gets worse . . .

Monthly Costs (3years server and 15 years infrastructure amotization)

Figure 1.1.7: Power breakdown of an 8 core server chip.

Berl, A., Gelenbe, E., Di Girolamo, M., Giuliani, G., De Meer, H., Dang, M. Q., & Pentikousis, K. (2010). Energy-efficient cloud computing. The computer journal, 53(7), 1045-1051.

... and worse!

Benini, L., & Micheli, G. D. (2000). System-level power optimization: techniques and tools. ACM Transactions on Design Automation of Electronic Systems (TODAES), 5(2), 115-192.

... and worse!

Benini, L., & Micheli, G. D. (2000). System-level power optimization: techniques and tools. ACM Transactions on Design Automation of Electronic Systems (TODAES), 5(2), 115-192.

Manotas, I., Bird, C., Zhang, R., Shepherd, D., Jaspan, C., Sadowski, C., ... & Clause, J. (2016, May). An empirical study of practitioners' perspectives on green software engineering. In 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE) (pp. 237-248). IEEE.

• It's complicated...

- It's complicated...
 - ASIC's (not flexible)
 - DVFS (microarch-constrained)
 - Accelerators (difficult to program)

- It's complicated...
 - ASIC's (not flexible)
 - DVFS (microarch-constrained)
 - Accelerators (difficult to program)
- ...but there are (kind of) new kids on the block!

- It's complicated...
 - ASIC's (not flexible)
 - DVFS (microarch-constrained)
 - Accelerators (difficult to program)
- ...but there are (kind of) new kids on the block!

Deep Learning + RISC-V = ?

Deep Learning + RISC-V = ?

• Not much, on their own

Deep Learning + RISC-V = ?

- Not much, on their own
- But what if we mixed **reconfigurable processors** in?

Concepts, Architectures, and Run-time Systems for Efficient and Adaptive Reconfigurable Processors

Lars Bauer, Muhammad Shafique, and Jörg Henkel Karlsruhe Institute of Technology (KIT), Chair for Embedded Systems, Karlsruhe, Germany {lars.bauer, muhammad.shafique, henkel} @ kit.edu Invited Paper at AHS 2011 Richard Neil Pittman, Nathaniel Lee Lynch, Alessandro Forin Microsoft Research

October 2006

Achieving Energy Efficiency through Runtime Partial Reconfiguration on Reconfigurable Systems

SHAOSHAN LIU, Microsoft RICHARD NEIL PITTMAN and ALESSANDRO FORIN, Microsoft Research JEAN-LUC GAUDIOT, University of California, Irvine

We should try this at home!

24

We should try this at home!

- RISC-V \rightarrow reliable toolchain
- Deep Learning → complex energy models
- FPGA \rightarrow dynamic adaptivity
- (Low-Power) Compiler Theory
 → robust background

...shouldn't we?

26

...shouldn't we?

 There must exist a reason why dynamically extensible processors haven't conquered the industry yet

...shouldn't we?

- There must exist a reason why dynamically extensible processors haven't conquered the industry yet
- Plus: the "system" imagined here has a ton of hidden red dangers (like the 2 shown)

29

• What does this look like to you?

- What does this look like to you?
 - A grant proposal?

- What does this look like to you?
 - A grant proposal?
 - A crazy dream of an ignorant young man?

- What does this look like to you?
 - A grant proposal?
 - A crazy dream of an ignorant young man?
 - *To Mr. Soudris:* a reason to fire me?

Let's talk!

THANK YOU