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Figure 1.1.1: Improvement in microprocessor and gate performance vs. year.

Figure 1.1.2: Number of transistors and feature size vs. year.

Horowitz, M. (2014, February). 1.1 computing's energy problem
(and what we can do about it). In 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC) (pp. 10-14). IEEE.
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Figure 1.1.1: Improvement in microprocessor and gate performance vs. year. Figure 1.1.2: Number of transistors and feature size vs. year.

Performance has scaled well . . .
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We hit the power wall!
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Figure 1.1.5: Instruction energy vs. peak performance (normalized).
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Figure 1.1.6: Instruction energy vs performance, with LLcache leakage added,
with original points shown in grey for comparison.
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It gets worse . . .
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Figure 1.1.7: Power breakdown of an 8 core server chip.

Horowitz, M. (2014, February). 1.1 computing's energy problem
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Figure 1.1.7: Power breakdown of an 8 core server chip.

Berl, A., Gelenbe, E., Di Girolamo, M., Giuliani, G.,
De Meer, H., Dang, M. Q., & Pentikousis, K. (2010). Horowitz, M. (2014, February). 1.1 computing's energy problem

Energy-efficient cloud computing. The computer (and what we can do about it). In 2014 IEEE International Solid-State Circuits Conference
journal, 53(7), 1045-1051. Digest of Technical Papers (ISSCC) (pp. 10-14). IEEE.
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Benini, L., & Micheli, G. D. (2000). System-level power optimization:
techniques and tools. ACM Transactions on Design Automation of
Electronic Systems (TODAES), 5(2), 115-192.
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Benini, L., & Micheli, G. D. (2000). System-level power optimization: & Clause, J. (2016, May). An empirical study of practitioners' perspectives

on green software engineering. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE) (pp. 237-248). IEEE.
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Electronic Systems (TODAES), 5(2), 115-192.
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* Not much, on their own
* But what If we mixed reconfigurable
p ro ces S 0 rS I n ’) eMIPS, A Dynamically Extensible Processor
Richard Neil Pittman, Nathaniel Lee Lynch, Alessandro Forin
Concepts, Architectures, and Run-time Systems for Microsoft Research
Efficient and Adaptive Reconfigurable Processors

October 2006
Lars Bauer, Muhammad Shafique, and Jérg Henkel croner
Karlsruhe Institute of Technology (KIT), Chair for Embedded Systems, Karlsruhe, Germany e 2 5 : : : =
{lars.bauer, muhammad.shafique, henkel} @ kit.edu Achieving .Ener Efficiency through Runtime Partial Reconfiguration
’ o on Reconfigurable Systems

Invited Paper at AHS 2011

SHAOSHAN LIU, Microsoft
RICHARD NEIL PITTMAN and ALESSANDRO FORIN, Microsoft Research

JEAN-LUC GAUDIOT, University of California, Irvine
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* Plus: the “system” imagined
here has a ton of hidden red
dangers (like the 2 shown)
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— To Mr., Soudris: a reason to fire
me?
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Let’s talk!

THANK YOU
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